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The stability of an infinite cylindrical shell subjected to ring loading is investigated. 
The solution of the problem is given on the basis of linearization of the near bending 
state of stress with a subsequent application of the Bubnov-Galerkin method. The numer- 
ical analysis is carried out on an electronic digital computer. The cases of ring loading 

acting on an infinite shell (Fig. l), of ring loading acting on a semi-infinite shell(Fig.2). 
and of a system of moments distributed uniformly over the endface (Fig. 3) are considered. 
In all cases the critical loading and the number of waves at buckling are determined. 

1. Let us start from the following relationships for the strain components 
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Here u, u are displacements along the coordinate lines a, /3; w along the normal, 
where u) is positive if the displacement is towards the center of curvature; R is the shell 
radius. 

As is known, the strain potential energy of a shell is composed of the strain energy in 
the middle surface and the bending energy 
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Here h is the thickness, u the Poisson coefficient, E the Young’s modulus. 
In conformity with (1.2). the stress resultants T,, Tz, S and the moments M,, M2, M 

are connected to the strain components by Hooke’s law 

Tr = El (elf aez), Tz = EI (ez + aed, S = I/Z EI (1 - a) y 
MI = Es (xl + oxz), Ma = Ez (~a + WQ), M = Ez (I -a) r (f.3) 

On the basis of the Lagrange variational principle, we obtain the equilibrium equations 

(1.4) 
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These equations are valid on portions of the shell where the load is absent. 
If we introduce the dimensionless parameters 

u V W 
ld1= h’ VI= - h ’ 

WI = - h ’ 

then by taking account of (1. l), (1.3) we write the system (1.4). (1,5) in displacements 
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Expressing T,, Tz, S in terms of the stress function @ by means of the known formulas 
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we arrive at a system of equations in the deflection and stress function 

The first equation of the system (1.8) is obtained from (1.5) taking account of (1.7), 
and the second expresses the condition of comatibility of the strains. 

2. In the axisymmetric case, (1.6) and (1.8) become, respectively, 

(2.1) 

(2.3) 
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1 diwo 
12(1--8)*- (2.4) 

Eliminating ~0 from (2. l), (2.2). ‘po from (2.3). (2.4), we obtain Eq. 
ddwo 

Yip 
4I.‘wIj = 0 (2.5) 

As is known, the general solution of (2.5) is 

w0 .= exE (C, co9 hE + Cs sin h&) + e -xE (cs cos A& + Cs sin G) (2.6) 

Since the forces applied at & = 0 produce a local strain which vanishes rapidly as the 
distance F, increases, the first term on the right side of (2.6) sould vanish. Hence, 
Cr = Cs = 0 and lap is finally written as 

~=~X+~(~=eGxE,X=+~E, IL= i+r, ji-i-r> 

The constants’ b and ‘b are determined from the boundary conditions at & = 0. From 
(2.1),(2.4) we find du 
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v3 (1 --a”) --_ 
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The exact solution of the axisymmetric problem has therefore been obtained. 

8, We seek the general solution of the system (1.6) as 

u1 = uo + u+, v, = 9 + u+, wr = WQ + w* 

and we write the general solution of (1.8) as 

w,= wo+ w*, cp = ‘PO + ‘p* 

Here, uo, L+,, WO, (PO correspond to the axisymmetric case. 

(2.8) 

(2.9) 

(3.1) 
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After substituting (3.1) and (3.2) into the system (1.6) and (1.8) having taken account 
of (2.7).(2.8).(2.9), and linearized the obtained equations near the axisymmetric ben- 
ding state, we arrive at differential equations with variable coefficents of u*, v*, w* 
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and a system in ID*, q* 
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(3.4) 
1 
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Thus, the problem has been reduced to the solution of either the system (3.3) or the 

system (3.4) with appropriate boundary conditions. 
We apply the Bubnov-Galerkin method to solve the systems of Eqs.(B. 3) and (3.4). 

We take Y+, u+, w*, cp* as u+ = fI(E) cos n?), u* = /a(&) ainnrl, w* = fs(S) cos’nn, 

V = f,(E) eos nrb where n is the number of complete waves around the circumference. 

Then (3.3) becomes 
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and Eqs. (3.4) go over into the following: 
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The functions h(E), h(E), h(E), I,(E) should satisfy the assigned boundary conditions. 
Let us select the following apprdximate expression for /s(E) 

Is(E) = "IX + Gi+ a1f-k cay + (lay& 

where the a{ are some constants. 

Hence, aI, I, can be expressed from the boundary conditions in terms of aa, dz, as as 

% = Ylaa + y& + ysaa, a, =-yl;a, + i&i:! + ysal 

Therefore, fs(E) depends on the three parameters aar ITS,, aa 

la(E) = CrIX + YaX+X%+ crz+ GX + x2) 
-- - 

az.+ (yaysx + 7s X + XT& (3.10) 

After substituting (3.10) into (3.5).( 3.6) and (3.Q we obtain a system to determine 

Il(Eh h(E) 
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‘/a (1 + a) nf1’ - l/z (i - a) IS” + n*fz = ASX -I- Is~ + BOX' -I- &? -I- KSX~ + 
+ r;lxa + Es $’ -I- Nsx=i +x6% (3.11) 

and an equation to determine f, (4) 
(3-W 

fP - 2n2f4” + dfc = Aax f &i + &x2 i- Es? -I- &xx $ Lax’ f %z? -I- Nsff+ H&f 

Let us find the general solution of the system (3.11) and (3.12) 
-- 
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14 (U = (CS + Cd9 ewnE + A& + i&*x + &*x2 + i%*i’ + &+xi + Lt’x’ + @? + 

+ WxiX + %i*-i’x (3.15) 

The constants Ci are determined from the boundary conditions; the polinomials A,*, 

B,+;K,*, L,+, Ni* (i= 1, 2, 3) depend on q, n, ?L, 6, aa, &, a3; the bar denotes the 
complex conjugate. 

Substituting(3.10),(3.13),(3.14) into(3.7)or(3.16).(3.15) into(3.9),alternately 
multiplying the equation obtained by (yrx + kx+ &it, (ysx •l- TIT -111) dE., (yax -i 

%i + xX)dE and integrating between zero and infinity we obtain three equations in 
as, 52, (18 in each case 

S,(q, n, 1, 02 + S2(q, n, A, aId2 + & 07, n, A, 0) a2 = 0 

SS, (q, n, h, 0) a2 +>&, n, A, 0) 62 +Nq, n, A, 02 = 0 

&(q, n, h, @al i- Uq, n, A, G2 + Sdq, n, h, a) a2 = 0 

(3.16) 

where the Si (i = 1,2,3,4,5) are second order polynomials in q ,, the loading parameter. 
Since, as # Is + as # 0, then to obtain a nontrivial solution of the system (3.16) its 
determinant should be zero Sl s2 ss 

32 31 s, = 0 

s4 34 s5 

For the given u we arrive at a sixth order algebraic equation in q which depends on 
k = n/h, 

Fl(k)q4 + F%(k)@ + Fs(k)q” + F4k)d + Ft,(k)q* + Fa.(k)q + F, (k) = 0 (3.17) 

Eq.(3.17) has been solved numerically by using the “Minsk-12” digital computer for 

U = 0.3. Programs were compiled for the calculation of the coefficients and roots of 
the equation. For each given h there was found an n, for which q became a minimum, 

denoted later by qo. 

1 
4. Let us consider an infinite cylindrical 

shell subjected to uniform (axisymmetric) ring 

loading (Fig. 1). To solve the stability problem, 
let us use the equilibrium equations in displace- 
ments. 

Fig. 1 

In the axisymmetric case w,r satisfies the fol- 
lowing boundary conditions for & = 0: 
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Then taking account of (4. l), Formulas (2.‘7),(2. 8) become 
n __ 
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The general solution of the problem is taken in the form (3.1). hence, IL*, u*, w* 

satisfy conditions at 6 = 0 a,c* 
Q 

au* =-~u*=--o 
at ag - 

where Q is the transverse force. Hence 

j, = j< = 0, ja’ = j”‘g = 0 for E = 0 (4.3) 

We take the functions jr(&), la(&), j&)- in the form (3.10),(3.13),(3.14). Taking(4.3) 
into account, we find 

y1=-- 5, ys = 3i, ys = ‘/%(I + 3i) (4.4) 

Cl = ‘I;[4 + (1 + o)nElH, CS = ‘14 E (1 + NT 

C, = Y,(i + a) (1 + nE)lI, Cd = r/,1(3 - a) + (1 - o)qElT/n 

The coefficients of (3.17) are calculated on the basis of these relations, but are not 

presented because of their awkwardness. 
bet us present the results of calculating qo for different values ofR/h: 

R/h = 10 20 50 100 200 400 600 800 iOO0 5000 10000 

n=3 4 5 7 9 13 16 19 22 43 61 

q. = 0.76 0.53 0.42 0.38 0.38 0.38 0.38 0.38 0.38 0.38. 0.38 

The critical loading is hence determined by means of Formula 

i?h 
(4.5) 

6. Let us consider a semi-infinite cylindrical shell subjected to uniform (axisymmet- 
ric) ring loading applied at the endface (Fig. 2). 

To solve this problem it is more convenient to use the 

equilibrium equations in the deflection and the stress func- 
tion. 

In the axisymmetric case w. satisfies boundary condi- 
tions at E = 0 

Fig. 2 dzwo o dk, 12P (1 -Go) R3 -- 
dca - 

~- 
’ dp --rl !I= Et14 (5.1) 

Taking account of (5.1). Formulas (2. ‘7). (2.9) become 

4,&-+x+“) (5.2) 

We take the general solution of the problem in the form (3.2); hence the following 
conditions should be satisfied at $ = 0: 

Tl=S=Q=M=O (5.3) 
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Hence, at 5 = 0 we have f, = f,’ = 0 

‘1;” - (2 -a) n2la’ = 0, fs” - an*/s = 0 (5.4) 

We take the functions f&) and f,(E) in the form (3.10) and (3.15). Taking account 

of (5.3) and (5.4), we find 
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On the basis of these relationships, we calculated the coefficients of (3.17) but do not 
present them because of their awkwardness. 

Let us present the results of calculating q. for a number of R / h values 

R / h = 10 20 50 100 200 400 600 800 1000 5000 10 000 
n= 3 4 5 7 10 13 15 19 21 44 61 
90 =0.35 0.21 0.22 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 

The critical loading is detrmined from Formula 

P, = 90 
Eh h 1.5 

(1 _ G2)“. 5 (> F (5.5) 

6, Let us consider a semi-infinite cylindrical shell subjected to a system of moments 

distributed uniformly over the endface (Fig. 3). 

The problem is solved analogously to the preceding by using the equilibrium equations 
in the deflection and stress functions. 

Let us present the results of calculating 9. for a number of R / h values: 

R /h = 10 20 50 100 200 400 600 800 1000 5000 10 000 
L Pa= 2 4 5 6 9 13 16 19 22 43 62 

q. =0.42-0;33 0.29 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 
where 

Eh2 h 
M* = (1 _ s2)o.i6 jf (6.1) 

To determine n for R / h > 100 we can use Formula 
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e = 2.718 

I u a . 
--- For sufiicrentli irie:$ I; the quantity qo is dependent 

I 
i_ 

\ on the thickness, and in the case of the effect of a ring load- 
ing on an infinite or semi-infinit; shell will equal, respec- 

Fig. 3 
tively, v0 = 0.38 and qo = 0.18, according to calculations 
utilizing (4.5) and (5.5). 

When a system of moments distributed uniformly over the endface acts, the calcula- 
tions yield C/O = 0.21 according to (6.1). 
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It is shown that if the initial state of stress of a body.is described by linear elasticity 
theory, then an energy criterion for neutral equilibrium can be formulated directly in 

terms of the external loading and the governing bifurcation of the displacements. To 
do this, besides the fundamental first order displacements, additional second order dis- 
placements on which external potential forces perform work during buckling, are intro- 
duced to describe the deflected equilibrium position of the body. These additional quad- 
ratic displacements are expressed in terms of the first order displacements. It therefore 
turns out that the stability problem of an elastic body can be solved without a prelimi- 
nary determination of its initial state of stress. The result obtained can be considered as 
the foundation and extension of the energy-stability criterion in the form of S. P. Timo- 
shenko. 

The energy stability criterion which does not require the initial stress determination 


